1,292 research outputs found

    Giant Rashba splitting of quasi-1D surface states on Bi/InAs(110)-(2×\times1)

    Get PDF
    Electronic states on the Bi/InAs(110)-(2×\times1) surface and its spin-polarized structure are revealed by angle-resolved photoelectron spectroscopy (ARPES), spin-resolved ARPES, and density-functional-theory calculation. The surface state showed quasi-one-dimensional (Q1D) dispersion and a nearly metallic character; the top of the hole-like surface band is just below the Fermi level. The size of the Rashba parameter (αR\alpha_{\rm R}) reached quite a large value (∌\sim5.5 eV\AA). The present result would provide a fertile playground for further studies of the exotic electronic phenomena in 1D or Q1D systems with the spin-split electronic states as well as for advanced spintronic devices.Comment: 8 pages (double column), 7 figures and 1 tabl

    Percentile Queries in Multi-Dimensional Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function ff, thresholds viv_i (one per dimension), and probability thresholds αi\alpha_i, we show how to compute a single strategy to enforce that for all dimensions ii, the probability of outcomes ρ\rho satisfying fi(ρ)≄vif_i(\rho) \geq v_i is at least αi\alpha_i. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape

    Effects of finite-range interactions on the one-electron spectral properties of one-dimensional metals: Application to Bi/InSb(001)

    Get PDF
    We study the one-electron spectral properties of one-dimensional interacting electron systems in which the interactions have finite range. We employ a mobile quantum impurity scheme that describes the interactions of the fractionalized excitations at energies above the standard Tomonga-Luttinger liquid limit and show that the phase shifts induced by the impurity describe universal properties of the one-particle spectral function. We find the explicit forms in terms of these phase shifts for the momentum dependent exponents that control the behavior of the spectral function near and at the (k,ω)-plane singularities where most of the spectral weight is located. The universality arises because the line shape near the singularities is independent of the short-distance part of the interaction potentials. For the class of potentials considered here, the charge fractionalized particles have screened Coulomb interactions that decay with a power-law exponent l>5. We apply the theory to the angle-resolved photo-electron spectroscopy (ARPES) in the highly one-dimensional bismuth-induced anisotropic structure on indium antimonide Bi/InSb(001). Our theoretical predictions agree quantitatively with both (i) the experimental value found in Bi/InSb(001) for the exponent α that controls the suppression of the density of states at very small excitation energy ω and (ii) the location in the (k,ω) plane of the experimentally observed high-energy peaks in the ARPES momentum and energy distributions. We conclude with a discussion of experimental properties beyond the range of our present theoretical framework and further open questions regarding the one-electron spectral properties of Bi/InSb(001).MIT - Massachusetts Institute of Technology(PTDC/FIS-MAC/29291/2017

    Z7Z_7 Orbifold Models in M-Theory

    Full text link
    Among T7/ΓT^7/\Gamma orbifold compactifications of MM-theory, we examine models containing the particle physics Standard Model in four-dimensional spacetimes, which appear as fixed subspaces of the ten-dimensional spacetimes at each end of the interval, I1≃S1/Z2I^1\simeq S^1/Z_2, spanning the 11th11^\text{th} dimension. Using the Z7Z_7 projection to break the E8E_8 gauge symmetry in each of the four-planes and a limiting relation to corresponding heterotic string compactifications, we discuss the restrictions on the possible resulting gauge field and matter spectra. In particular, some of the states are non-local: they connect two four-dimensional Worlds across the 11th11^\text{th} dimension. We illustrate our programmable calculations of the matter field spectrum, including the anomalous U(1) factor which satisfies a universal Green-Schwarz relation, discuss a Dynkin diagram technique to showcase a model with SU(3)×SU(2)×U(1)5SU(3)\times SU(2)\times U(1)^5 gauge symmetry, and discuss generalizations to higher order orbifolds.Comment: 23 pages, 2 figures, 4 tables; LaTeX 3 time

    The magnetic properties of 177^{\rm 177}Hf and 180^{\rm 180}Hf in the strong coupling deformed model

    Get PDF
    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2−^-, 51.4 m, 2740 keV state in 177^{\rm 177}Hf and the 8−^-, 5.5 h, 1142 keV state in 180^{\rm 180}Hf by the method of on-line nuclear orientation. Also included are results on the angular distributions of gamma transitions in the decay of the 177^{\rm 177}Hf isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+^+, 1.1 s, isomer at 1315 keV and on the 9/2+^+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR_{\rm R} parameter upon the quasi-proton and quasi-neutron make up of high-K isomeric states in this region.Comment: 9 pages, 9 figures, accepted for publication in Physical Review

    Precision spectroscopy of pionic 1s states of Sn nuclei and evidence for partial restoration of chiral symmetry in the nuclear medium

    Get PDF
    Deeply bound 1s states of π−\pi^- in 115,119,123^{115,119,123}Sn were preferentially observed using the Sn(dd,3^3He) pion-transfer reaction under the recoil-free condition. The 1s binding energies and widths were precisely determined, and were used to deduce the isovector parameter of the s-wave pion-nucleus potential to be b1=−0.115±0.007 mπ−1b_1 =-0.115\pm 0.007 ~m_{\pi}^{-1}. The observed enhancement of ∣b1∣|b_1| over the free πN\pi N value (b1free/b1=0.78±0.05b_1^{\rm free}/b_1 = 0.78 \pm 0.05) indicates a reduction of the chiral order parameter, fπ∗(ρ)2/fπ2≈0.64f^{*}_{\pi} (\rho)^2/f_{\pi}^2 \approx 0.64, at the normal nuclear density, ρ=ρ0\rho = \rho_0.Comment: 4 pages including 3 postscript figures, RevTeX 4 with multirow.sty, submitted to Physical Review Letter

    Non-trivial surface states of samarium hexaboride at the (111) surface

    Get PDF
    The peculiar metallic electronic states observed in the Kondo insulator, samarium hexaboride (SmB6_6), has stimulated considerable attention among those studying non-trivial electronic phenomena. However, experimental studies of these states have led to controversial conclusions mainly to the difficulty and inhomogeneity of the SmB6_6 crystal surface. Here, we show the detailed electronic structure of SmB6_6 with angle-resolved photoelectron spectroscopy measurements of the three-fold (111) surface where only two inequivalent time-reversal-invariant momenta (TRIM) exist. We observe the metallic two-dimensional state was dispersed across the bulk Kondo gap. Its helical in-plane spin polarisation around the surface TRIM suggests that SmB6_6 is topologically non-trivial, according to the topological classification theory for weakly correlated systems. Based on these results, we propose a simple picture of the controversial topological classification of SmB6_6.Comment: 34 pages, 4 figures for main text; 9 figures for supplementary materia

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance
    • 

    corecore